МЕТОД ИССЛЕДОВАНИЯ РЕЛАКСАЦИОННЫХ СВОЙСТВ ОФСЕТНОГО РЕЗИНОТКАНЕВОГО ПОЛОТНА

Байдаков Д. И., Штоляков В.И., Иванова Д.А.

Высшая школа печати и медиаиндустрии Московского политехнического университета

Abstract

A method for investigating the relaxation properties of an offset rubber fabric is proposed. The parameters of the inverse elastic aftereffect are determined in the absence of pressure on the web.

Key words: offset rubber of the web, relaxation properties, reverse elastic aftereffect

В процессе печати офсетное резинотканевое полотно (ОРТП) в ротационном аппарате испытывает циклические деформации сжатия в зоне силового контакта (зоне печати). Величина давления, при котором осуществляется стабильный переход краски на запечатываемый материал, составляет в среднем 0,8 МПа. После выхода офсетного полотна из зоны печатного контакта происходит последующее восстановление его размеров в результате сброса давления на полотно. Подобное релаксационное восстановление размеров при полном прекращении внешнего воздействия названо обратным упругим последействием [1].

Деформация сжатия $\varepsilon_{\text{сум}}$ включает три составляющих различной физической природы: упругой єупр, высокоэластической євэл и остаточной єост. Считают, что лучшие современные ОРТП имеют следующее соотношение составляющих суммарной деформации сжатия: $\varepsilon_{\text{упр}} \approx 75$ %; $\varepsilon_{\text{взл}} \approx 10$ %; $\varepsilon_{\text{ост}} \approx 15$ %. Указанное соотношение деформаций является свидетельством высокого качества ОРТП [2]. Однако остаточная или пластическая деформация в ОРТП в реальном печатном процессе проявляется в полной мере только при 15-ти млн. циклов его нагружения, что соответствует 5-ти месяцам работы листовой офсетной печатной машины.

Упомянутое соотношение деформаций определяют в статических условиях без полного снятия сжимающего усилия, принимая за упругую ту деформацию, которая восстанавливается за первые 10 с после сброса нагрузки до 0,1 МПа [3]. Однако простые расчеты показывают, что упругие деформации в полотне, толщина которого не превышает

2 мм, возникают и исчезают в нем со скоростью звука за время, не превышающее микросекунды [4].

Очевидно, что практический интерес представляет оценка доли упругих и высокоэластических (вязкоупругих) деформаций ОРТП в условиях деформирования, приближенных к реальным рабочим. Это осуществлено путем определения деформаций полотна на основе анализа цифровых микроизображений торцевых срезов образцов, полученных в ходе прямого и обратного упругого последействия. Методика обработки микрофотографий описана в работе [5].

Результаты исследования упругого последействия получены на установке (рис. 1), включающей толщиномер с измерительным усилием 20 H, создающий деформацию сжатия, и регистрирующие приборы, в качестве которых применены цифровой USB микроскоп Microsafe ShinyVision MM-2288-5X-S и персональный компьютер. Измерительное усилие на квадратный образец площадью 0,25 см² создавало давление 0,8 МПа, соответствующее давлению печати.

Рычажное устройство подъёма измерительного наконечника толщиномера позволило сравнительно быстро сбросить давление сжатия по сравнению с другими методами создания и сброса давления, упомянутыми в [5, 6].

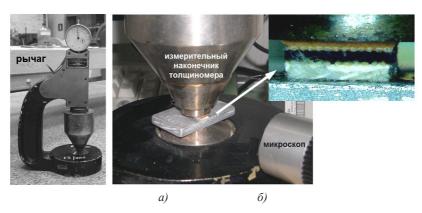
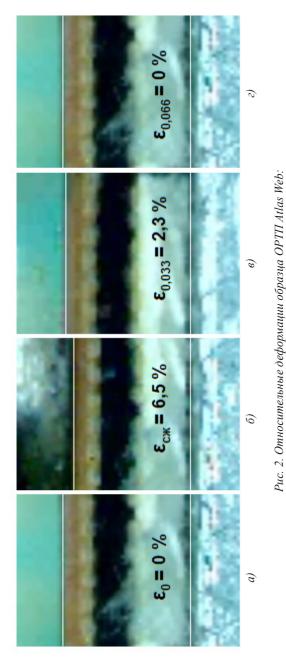


Рис. 1. Толщиномер (a) и деформированный образец ОРТП Atlas Web на измерительной поверхности пятки толщиномера (б).

Для раскадровки видеофайла, записанного с помощью микроскопа с частотой 30 кадров в секунду, применен многофункциональный MPEG редактор MPEG Video Wizard DVD [7]. Временной интервал между соседними кадрами составлял 0,033 с. Фиксирование изменения дефор-


мации за меньший промежуток времени не позволяют технические возможности цифрового микроскопа (скорость записи кадров). Все кадры видеофайла (рис. 2) получены в одном масштабе, поэтому при расчете относительных деформаций определять реальные размеры образца не было необходимым. Для анализа кадров видеофайла последние размещались на слайдах программы Microsoft Office PowerPoint. Размеры образца и его относительные деформации определены по методике, приведенной в [8].

Поскольку прямое и обратное упругое последействие имеет одну и ту же природу и оба описываются экспоненциальным законом, то для оценки релаксационных свойств ОРТП достаточно определить параметры одного из двух последействий. Проще и нагляднее анализ релаксационного процесса осуществлять на примере обратного упругого последействия.

Полученные результаты обсуждаются на примере исследования релаксационных свойств OPTП Atlas Web [9].

Анализ изменения размеров образца ОРТП показывает (рис. 2), что уже через 0,033 с после сброса давления относительная деформация $\varepsilon_{0,033}$ составляет 2,3 %. На следующем кадре, соответствующем продолжительности последействия 0,066 с, деформация образца отсутствует. Через 0,066 с после сброса давления полностью исчезли упругие и упругие высокоэластические деформации и произошло полное восстановление размеров образца, не смотря на то, что образец предварительно подвергался давлению 0,8 МПа в течение 15 мин, как того требуют методические рекомендации [3].

Таким образом, предложенный метод исследования релаксационных свойств даёт возможность прогнозировать поведение ОРТП в динамических условиях эксплуатации полотна. Например, в листовой печатной машине среднего формата частота вращения офсетного цилиндра составляет 18000 об/час и один его оборот длится 0,2 с. К моменту завершения оборота офсетного цилиндра полотно Atlas Web полностью восстановит свои упруго-эластические свойства, при этом остаточные деформации, которые рекомендуют определять согласно [3], полностью отсутствуют. Можно предположить, что ухудшение механических свойств полотна при его эксплуатации преимущественно будет обусловлено механо-химическими процессами и возможными гистерезисными потерями, проявляющимися даже при упругих высокоэластических деформациях.

Расстояния по вертикали между белыми горизонтальными линиями соответствуют толщине образца. в, г – обратное упругое последействие в течение соответственно 0,033 с и 0,066 с. a - 6e3 давления; 6 - noo давлением 0,8 МПа;

Наиболее полно исследование релаксационных свойств ОРТП предлагается производить в динамических условиях путем реализации полезной модели, предложенной в соответствующем патенте [10].

Литература

- 1. Последействие упругое. Физическая энциклопедия. Том 4. Большая Российская энциклопедия, М., 1994. с. 88.
- 2. Белокрысенко В.Ф., Токарев В.Н., Белоусова И.П., Машинцева Н.В. Как повысить тиражестойкость офсетного декеля: [Электронный ресурс] Сайт журнала «КомпьюАрт», выпуск № 4, 2007. Режим доступа: http://www.compuart.ru/Article.aspx?id=17532, свободный.
- 3. Методические рекомендации. Пластины офсетные резинотканевые. Общие технические условия. ОАО «ВНИИ полиграфии» (АО ИНПОЛ), 2004: [Электронный ресурс]. Режим доступа: http://doc.knigi-x.ru/22tehnicheskie/319458-1-utverzhdayu-zamestitel-ministra-mptr-rossii-vvgrigorev-16-fevralya-2004-metodicheskie-rekomendacii-plastini-ofset.php, свободный.
- 4. Байдаков Д.И. Оценка остаточных деформаций офсетных резинотканевых полотен // Полиграфия. 2014. № 8. с. 40-42.
- 5. Байдаков Д.И. Деформация слоев офсетного резинотканевого полотна при сжатии. Полиграфия. 2014. № 7. с. 38-40.
- 6. ГОСТ 29089-91. Материалы полимерные ячеистые эластичные. Определение остаточной деформации сжатия: [Электронный ресурс]. Режим доступа: http://standartgost.ru/ГОСТ%2029089-91, свободный.
- 7. MPEG Video Wizard DVD 5.0.1.109: [Электронный ресурс]. Режим доступа: http://softobase.com/ru/mpeg-video-wizard-dvd, свободный.
- 8. Байдаков Д.И. Набухание краскопередающего слоя офсетных резинотканевых полотен. Полиграфия. 2014. № 5. с. 46-48.
- 9. Офсетные резинотканевые полотна AIR Excel Atlas Web. [Электронный ресурс] Сайт компании «Полиграф-Клуб». Режим доступа: http://poligraph.club/index.php?route=product/product&path=118_18_59_124&product_id=93, свободный.
- 10. Штоляков В.И., Байдаков Д.И. Патент на полезную модель № 157162: Устройство для оценки деформационных свойств офсетного полотна. Официальный бюллетень Федеральной службы по интеллектуальной собственности (Роспатент), № 32-2015, 20.11.2015. ФИПС, М: [Электронный ресурс]. Режим доступа: http://www1.fips.ru/fips_servlet?DB=RUPM&DocNumber=157162&TypeFile=html, свободный.