
123

Donatas Sandonavičius1, Aušra Gadeikytė1, Giedrius Paulikas1, Mindaugas Vaitkūnas1,

Gytis Vilutis1, Gintaras Butkus2

1Kaunas University of Technology, 2Kaunas University of Applied Sciences

Abstract. The Grid computing environment is very important for solving scientific problems. To get the best performance

from Grid, it is important to know where to send tasks. This paper is about one of the suggested methods for a Grid resource

broker to find the best resources for the task. This method requires defining the parameters of the resources and knowing the
importance of the weights of parameters. This paper also presents the self-learning method of parameter weights.

Keywords: Grid, Cloud, Quality of Service, Resource Broker, Self-learning of parameter weights.

Introduction

Grid and Cloud networks provide SaaS

(Software as a Service) services that process various

user tasks, for example, video rendering - a popular

and computing-intensive task. Because different

Grid vendors share different sets of resources, the

timing of the service itself also differs. Considering

the fact that different sets of resources have different

payment plans, the quality of service for users is

determined mainly by these two components: price

and execution time. It is important for the user to

choose the Grid supplier with the best price-to-

service ratio. Large Clouds, like Grids, combine a

large number of computing resource clusters and

vendors themselves outsource tasks to the least

loaded and best fitting cluster. Therefore, the

problem of fast task execution is relevant for both

end-users and SaaS service providers.

Suboptimal selection of grid resources hinders

the execution of user tasks. This article presents the

Quality of Grid Service (QoGS) method that uses

resource parameters to select the most appropriate

resource. However, different types of tasks require

different weights of parameters (WoP). Proper

selection of WoP determines the quality of the

service received in the Grid. Most frequently, the

quality of the service is defined by the following

parameters: computation time, data transfer rate,

data security and parallelism (Sulaiman, Halim,

Lebbah, Waqas, Tu, 2021; Wang, Wang, 2021;

Lavanya, Shanthi, Saravanan, 2020). The effective

selection of resources ensures faster execution of

computing tasks and more precise results. As

resource availability changes over time depending

on Grid load, constant updating of WoP is required

to ensure the quality of Grid services.

The problem of task scheduling is pertinent to

computing Grid networks and SaaS Clouds

(Mahato, Sandhu, Singh, Kaushal, 2020; Rawat,

Dimri, Gupta, 2020; Ankita, Sahana, 2020; Gabri,

Agrawal, Srinivas, 2020; You, Luo, He, 2020;

Abualigah, Diabat, 2021). Grid resources are

usually selected by the Estimated Response Time

(ERT) method (McBride, Krznaric, Darlington, van

der Aa, Aggarwal, Colling, 2006). ERT method

selects resources by comparing them only by two

parameters: the queue length for the resource and

CPU speed. If the resource selection is wrong, Grid

will have both free and overloaded resources. Some

resources will have long queues of tasks. That

results in a lower quality of service for the user

because the tasks take longer to complete.

Temporary certificates are sent with the task to

Grid, and they determine how long the task can be

run on Grid. As a result, some tasks may be lost

altogether due to the expiration of their certificates.

The selection of resources impacts not only the time

of the task execution but also the time of the other

tasks. The main reason that prevents researchers

from creating the optimal resource selection method

is the lack of data on queue waiting time and task

execution time (Sharma, Kumar, Jain, 2020; Chen,

Yuan, Wang, Luo, Luo, 2020).

The main focus of this article is to define the

method for evaluating parameters of Grid resources

that affect the quality of the service provided by the

Grid. The evaluation of parameters is used to select

the best-suited resources for the user’s tasks. This

improves the efficiency of Grid resource utilization,

shortens the average task completion time and

reduces the number of tasks rejected.

MOKSLO TAIKOMIEJI TYRIMAI LIETUVOS KOLEGIJOSE, 2021 Nr.17 (2), p. 123–129
ISSN 1822-1068 / eISSN 2335-8904, http://ojs.kaunokolegija.lt/index.php/mttlk/index

124

Fig. 1. QoGS method

Grid resource selection method

ERT (Estimated Response Time) is a common

Grid computing method for selecting resources, and

it performs well for identical tasks (Fig. 1). However,

this is rarely the case. Grid usually operates with

diverse tasks that exercise an uneven load of Grid

resources. The ERT method selects resources using

only two parameters: JNR - the length of the task

queue for the resource and CPS - processor

speed/number of processors. That’s not enough for

selecting the most appropriate resource because the

task may be sent to the resource where the waiting

time is too long.

This article presents a new method for resource

selection, called QoGS (Quality of Grid Service),

which chooses resources according to the quality of

the service (QoS) of the resource. The Resource

QoS is calculated after evaluating resource

parameters and is used to select the most suitable

resource for task execution.

QoGS method has six main components (Figure

1): “Description of resource requirements”, “WoP

self-learning”, “Monitoring of dynamic

parameters‟, “Forecasting dynamic parameters”,

“Evaluation of resource QoS” and “Resource

selection”.

Before sending a task to Grid, the user may set

its resource requirements. The task with the attached

requirements is sent to the Resource Broker (RB).

“Monitoring of dynamic parameters” and

“Forecasting dynamic parameters” output,

combined with task resource requirements, allow

RB to select the most appropriate resource for the

task execution. SARIMA method is used for

dynamic parameter forecasting (see a detailed

discussion about this component in Sutiene, Vilutis,

Sandonavicius, 2011). Forecasting the load of

available resources is a major task in both Cloud and

Grid environments (Gao, Wang, Shen, 2020;

Masdari, Khoshnevis, 2020; Qionga, Zhiyongc,

Xiaolua, 2020; Gadhavi, Bhavsar, 2019). Before

selecting a resource, RB evaluates the QoS of all

resources using sets of parameters weights (SoPW).

If the user did not specify the SoPW in task

requirements, SoPW are taken from the “WoP self-

learning” component (see Section “Self-learning of

QoGS SoPW”). Self-learning in this component is

activated by RB at defined time intervals and

provides the currently best SoPW for the

“Evaluation of resource QoS” component. The

latter uses static parameters, resource requirements,

SoWP and dynamic parameter forecasting to

compute QoS for each resource (Pilkauskas,

Plestys, Vilutis, Sandonavicius, 2011). “Evaluation

of resource QoS” emits the resource QoS values, the

resource with the highest QoS is selected, and

eventually, the task is sent to that resource. The

main focus of the QoGS method is on the

“Evaluation of resource QoS” component that is

responsible for selecting adequate resources.

By default, coefficients are set by the user. If

WoP in resource brokers were selected and adjusted

by “WoP self-learning”, it would be easier for users

to describe tasks before sending them to the Grid.

This is presented in the next section.

Self-learning of QoGS SoPW

The selection of resources is directly related to

the correct SoPW. Setting WoP is not enough; it is

necessary to correct SoPW in time because the Grid

size and behaviour change (Fig. 2). If the user’s

main criterion for the quality of service is

determined by the shortest time to the results of the

125

task (TTD - Time To Delivery: the time interval

from sending the task to the execution), it is

necessary to take into consideration many

parameters of resources when selecting for the best

(Vilutis, Sandonavičius, 2008). The most suitable

SoPW for each Grid network may differ. Therefore,

RB requires the self-learning mechanism of

determining WoP (Figure 2). These WoP are used

in the formula (1) calculating Q.

Fig. 2. Grid QoGS self-learning algorithm

126

𝑄𝑛𝑘 =

{

 1,𝑤ℎ𝑒𝑛 𝑁 = 1 𝑎𝑛𝑑 𝑉𝑛𝑗

𝑀 ≤ 𝑉𝑘𝑗
𝑀𝑅 𝑎𝑛𝑑 𝑉 ≥ 𝑉𝑘𝑖

𝐷𝑅 , 𝑖 = 1, 𝐼, 𝑗 = 1, 𝐽, 𝑛 = 1, 𝑁

∑ (𝜔𝑘𝑖
𝐷 ⋅

𝑉𝑛𝑖
𝐷

𝑉𝑖
𝐷𝑚𝑎𝑥

)+∑ (𝜔𝑘𝑗
𝑀 ⋅

𝑉𝑗
𝑀𝑚𝑎𝑥 −𝑉𝑛𝑗

𝑀

𝑉𝑗
𝑀𝑚𝑎𝑥 −𝑉𝑗

𝑀𝑚𝑖𝑛
)

𝐽
𝑗=1

𝐼
𝑖=1

∑ 𝜔𝑘𝑖
𝐷+∑ 𝜔𝑘𝑗

𝑀𝐽
𝑗=1

𝐼
𝑖=1

,

𝑤ℎ𝑒𝑛 𝑉𝑛𝑗
𝑀 ≤ 𝑉𝑘𝑗

𝑀𝑅

𝑎𝑛𝑑 𝑉𝑛𝑖
𝐷 ≥ 𝑉𝑘𝑖

𝐷𝑅 , 𝑁 > 1

𝑖 = 1, 𝐼, 𝑗 = 1, 𝐽

0, 𝑤ℎ𝑒𝑛 𝑉𝑛𝑗
𝑀 > 𝑉𝑘𝑗

𝑀𝑅 𝑜𝑟 𝑉𝑛𝑖
𝐷 < 𝑉𝑘𝑖

𝐷𝑅 , 𝑖 = 1, 𝐼, 𝑗 = 1, 𝐽, 𝑛 = 1, 𝑁

 (1)

where: n – resource number; 𝑛 = 1,𝑁, N – resource

number in Grid; k – task number; 𝑉𝑛𝑖
𝐷

 – the value of

the i-th parameter of the n-th resource (“D” marks

the parameter, and when the value of this parameter

increases, the qualitative estimate increases);

𝑉𝑗
𝑚𝑎𝑥 – the highest value of the i-th parameter in

the Grid network (𝑉𝑖
𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥

𝑛=1,...,𝑁
𝑉𝑛𝑖
𝐷); 𝑉𝑛𝑗

𝑀 – the

values of the j-th parameter of the n-th resource

(“M” marks the parameter and when the value of

this parameter increases, the qualitative estimate

decreases); 𝑉𝑗
𝑀𝑚𝑎𝑥 – the highest and 𝑉𝑗

𝑀𝑚𝑖𝑛 the

lowest values of the j-th parameter in Grid network

(𝑉𝑗
𝑀𝑚𝑎𝑥 = 𝑚𝑎𝑥

𝑛=1,...,𝑁
𝑉𝑛𝑗
𝑀, 𝑉𝑗

𝑀𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑛=1,...,𝑁

𝑉𝑛𝑗
𝑀);

𝑉𝑘𝑖
𝐷𝑅 and 𝑉𝑘𝑗

𝑀𝑅 – limits of values for the i-th and j-th

user-set parameters, which indicate the

requirements set for the execution of the k-th task;

𝜔𝑘𝑖
𝐷 and 𝜔𝑘𝑗

𝑀 – weights of the i-th and j-th

parameters that are set for the k-th task.

The easiest way of obtaining the best SoPW is to

send tasks with all possible SoPW to the Grid

network and observe which SoPW results in the

fastest execution of tasks. This approach is very

time-consuming and was discussed in Vilutis,

Butkiene, Lagzdinyte-Budnike, Sandonavicius,

Paulikas (2013). This paper presents an improved

and more detailed method, which also suggests

checking the Grid network size. When the Grid

network is small, and the amount of WoP in the set

is large, the Grid network experiences an

unnecessary load of testing tasks, and a large

number of tasks end up at the same resources.

Therefore, this way is only suitable for large Grid

networks. For small ones, another self-learning

mechanism that does not saturate the network by

test tasks is needed. In the case of a small Grid

network (less than 100 resources), to avoid

overloading the Grid network by test tasks, it is

recommended to execute self-learning with the least

amount of test tasks. When the amount of resources

in the Grid network is large, sending test tasks with

selected SoPW is used, and only then WoP

parameters are specified. The WoP that are selected

by self-learning of QoGS require correction.

However, the disadvantage of these self-learning

methods is that self-learning uses only a small

amount of available statistical data, whereas to

employ the QoGS method, all SoPW are required.

A well-known method of brute force can be used to

obtain the best-fitting SoPW.

The application of the brute force method in

QoGS needs the following data: WoP change

restrictions and step size for the change. It’s best to

restrict WoP change to [0;10] with a step size of 1.

To find the most suitable SoPW, a complete

reselection of all SoPW is performed and used in the

Grid network simulation to find the SoPW that can

use the Grid network resources most efficiently.

After the best SoPW finding research, the following

restrictions are recommended for applying the

QoGS method in the Grid network to search for the

best SoPW:

 the queue length for jobs JNR is provided with

WoP value between [5;10];

 the time of jobs queued 𝑇𝑄
𝐶 is provided with

WoP value between [5;10];

 the central processor speed CPS is provided

with a WoP value between [1;5];

 the amount of working nodes WNA is provided

with WoP value between [1;5];

 other parameters have WoP values between

[1;5].

It is possible to expand WoP restrictions up to

[0;20] or [0;50], but it will not improve the

operation of the QoGS method much. Meanwhile,

due to the much bigger amount of the SoPW used in

the brute force, the search for the best SoPW slows

down significantly.

This is why there are cases when values that

define resource QoGS according to the formula (1)

are equal while SoPW are different.

The brute force method can also be used partially

because normalization of the parameters Vi and Vj is

performed with the help of the denominator in the

formula (1). The condition for the rejection of

SoPW is this: SoPW is rejected if another SoPW

was already used where all ωi equally affected the

values of the parameters Vi when the resource Q was

processed [20].

For example, when the WoP amount increases

from 3 to 4, the amount of repetitive SoPW

increases from 158 to 720.

After rejecting repetitive SoPW, the selected

SoPW is called the partial brute force SoPW. When

the QoGS method is applied for the first time, it is

necessary to find the best SoPW. So, at first, all

127

WoP are set (values of 1 are recommended), and test

tasks are sent with the partial brute force SoPW. If

the number of parameters is large, a very large

number of test tasks are sent to the network (for

example, when parameters are 4, about 9280 test

tasks are sent). This high load for the Grid network

makes the execution of self-learning attractive. The

brute force method is used only for the first time,

while later, only the test tasks necessary for

specifying parameters are sent to the network. When

running learning for the first time, it is

recommended to use the partial brute force SoPW

method.

The study of rejection of repetitive SoPW was

performed in this research. To estimate how many

sets were rejected, parameter quantities of 2, 3 and

4 were used with ranges from 1 to 10 and step 1. The

results are given in Table 1.

Table 1. Rejection of repetitive SoPW parameter sets

Number of

parameters

Total number

of SoPW

Rejected

SoPW

Rejected

percentage

2 100 36 36

3 1000 158 15.8

4 10000 720 7.2

 When the number of parameters is very small (2),

the number of rejected variants is as high as 36 per

cent. With 4 parameters, the number of rejected

variants is 720, which is 7.2 per cent of the

generated SoPW. The increased number of

parameters generates an increasing number of

repetitive SoPW that will not be sent to the Grid and

would only overload it if not discarded. This SoPW

rejection reduces the number of test tasks with

SoPW that are sent to the Grid. This way, it reduces

the load on the network with testing tasks and

eliminates duplicate SoPW variants with repetitive

WoPs.

When the rejection of repetitive SoPW is

finished, the way of SoPW self-learning is selected

(Figure 2). If the Grid network is large (>100

resources), it is proposed to select self-learning and

send tasks with all selected partial brute force

SoPW. Since many test tasks are sent to the Grid

network during self-learning, it is not recommended

to execute self-learning while specifying SoPW. If

the structure of the Grid network has changed,

SoPW should be specified.

Correction of SoPW values is performed

differently when SoPW is determined by the partial

brute force method. This correction is performed by

forming small SoPW arrays where all SoPW differ

by values of the same WoP (Figure 2). Test tasks are

sent by the first SoPW array; then, resources are

selected with the help of the QoGS method. When

the results of test tasks are received, the SoPW, which

resulted in the fastest processing of the test task (the

shortest time TTD from sending the task until its

execution), is selected. During the next iteration,

another SoPW array is formed, where SoPW differ

by the values of the next WoP, whereas the value of

the first parameter in all SoPW coincides with the

value of the newly received WoP. These iterations

are repeated until all the best SoPW values are set.

When the WoP correction algorithm is used, the

chances that the best SoPW will not be found are low.

For small Grid networks, self-learning is not

suitable if tasks are sent together with the SoPW

generated during the application of the partial brute

force. A small Grid network would be overloaded

with test tasks. Many tasks with different SoPW

would be sent to the same resources, making

obtaining the most suitable SoPW more difficult.

Thus another self-learning way that uses the

minimal amount of test tasks is employed for the

Grid networks with less than 100 resources. It

reduces the amount of both the sent tasks and the

workload of the Grid network.

Self-learning uses qualitative weight parameters

(ωW, ωL, ωC, ωN), where values are within the range

of [0; 10]. When the number of accessible resources

is around 30, using “the minimum amount of test

tasks” compared to sending tasks with partial SoPW

reduces the number of the tasks by approximately

99.7 per cent (from 9280 to 30). The main

advantage of this algorithm is that the number of test

tasks sent to the Grid network is equal to the number

of resources in the network. The method with

minimal test tasks follows this procedure: after

receiving the data about test jobs, resources are

ranked by TTD of test tasks. This list is considered

the benchmark. Next, the computing of the service

quality for resources Q (using the SoPW generated

by the partial brute force method) and ranking

(descending) according to the computed values Q is

performed. Based on these values, resources are

sorted in descending order. The calculation results

are written in a matrix. The best SoPW from the

matrix is considered the one that, according to the

list of ranked resources, is the closest or even equal

to the list of benchmark resources. If several

duplicate SoPW are found, the SoPW with the value

Q of the resources that best correlates with the time

of test tasks TTD is selected.

Deploying these self-learning ways, the best

SoPW is determined, recorded into RB and used in

the QoGS method. However, if the network structure

changes, it is necessary to renew SoPW.

Self-learning, which uses the minimum amount

of test tasks, suits well when the users of the Grid

services have access (certificate) to a small number

of resources that can handle tasks, and they want to

obtain the best SoPW by themselves.

128

Conclusions

A QoGS method has been developed for

selecting resources for future tasks in the Grid.

Using this new method, a resource is selected based

on its qualitative parameters and the assessment of

the quality of the service. The method allows

shortening the queues and task execution time.

Algorithms for weighting coefficients are

proposed. Determining the coefficients allows the

selection of the most appropriate resources for the

task at hand.

References

1. Sulaiman, M., Halim, Z., Lebbah, M., Waqas, M.,

Tu, S. (2021). An Evolutionary Computing-Based

Efficient Hybrid Task Scheduling Approach for

Heterogeneous Computing Environment. Journal of

Grid Computing, volume 19, Article number: 11.

552-4.

2. Wang, J., Wang, L. (2021). A Computing Resource

Allocation Optimization Strategy for Massive

Internet of Health Things Devices Considering

Privacy Protection in Cloud Edge Computing

Environment. Journal of Grid Computing, volume

19, Article number: 17.

3. Lavanya, M., Shanthi, B., Saravanan, S. (2020).

Multi-objective task scheduling algorithm based on

SLA and processing time suitable for cloud

environment. Computer Communications, Volume

151, 183-195.

4. Mahato, D. P., Sandhu, J. K., Singh, N. P., Kaushal,

V. (2020). On scheduling transaction in grid

computing using cuckoo search-ant colony

optimization considering load. Cluster Computing

23, 1483–1504.

5. Rawat, P. S., Dimri, P., Gupta, P. (2020). Learning-

Based Task Scheduling Using Big Bang Big Crunch

for Cloud Computing Environment. Recent

Advances in Computer Science and

Communications, Volume 13, Number 2, 137-146.

6. Ankita, Sahana, S. K. (2020). Evolutionary based

hybrid GA for solving multi-objective grid

scheduling problems. Microsystem Technologies

volume 26, 1405–1416.

7. Gabri, L. R., Agrawal, Y., Srinivas, BK. (2020). A

Survey on Grid Computing Scheduling Algorithms.

International Journal for Research in Applied

Science & Engineering Technology (IJRASET)

Volume 8 Issue VI, 731-736.

8. You, M., Luo, W., He, M. (2020). Resource

scheduling of information platform for general grid

computing framework. International Journal of Web

and Grid Services, Volume 16, Issue 3, 254-272.

9. Abualigah, L., Diabat, A. (2021). A novel hybrid

antlion optimization algorithm for multi-objective

task scheduling problems in cloud computing

environments. Cluster Computing volume 24, 205–

223.

10. McBride, D., Krznaric, M., Darlington, J., van der

Aa, O., Aggarwal, M., Colling, D. (2006). Running

a Production Grid Site at the London e-Science

Centre. e-Science and Grid Computing. Amsterdam,

The Netherlands, 153-153.

11. Sharma, M., Kumar, R., Jain, A. (2020). A Proficient

Approach for Load Balancing in Cloud Computing-

Join Minimum Loaded Queue: Join Minimum

Loaded Queue. International Journal of Information

System Modeling and Design (IJISMD) 11(1), 25.

12. Chen, M., Yuan, J., Wang, N., Luo, Y., Luo, P.

(2020). Two-Sided Matching Scheduling Using

Multi-Level Look-Ahead Queue of Supply and

Demand. International Conference on Service-

Oriented Computing ICSOC 2020: Service-Oriented

Computing, 525-532.

13. Sutiene, K., Vilutis, G., Sandonavicius, D. (2011).

Forecasting of GRID Job Waiting Time from

Imputed Time Series. Electronics and electrical

engineering ISSN 1392 – 1215. No. 8(114).

14. Gao, J., Wang, H., Shen, H. (2020). Machine-

Learning-Based Workload Prediction in Cloud

Computing. 2020 29th International Conference on

Computer Communications and Networks (ICCCN),

1-9.

15. Masdari, M., Khoshnevis, A. (2020). A survey and

classification of the workload forecasting methods in

cloud computing. Cluster Computing volume 23,

2399–2424.

16. Qionga, S., Zhiyongc, T., Xiaolua, Z. (2020).

Workload prediction of cloud computing based on

SVM and BP neural networks. Journal of Intelligent

& Fuzzy Systems, vol. 39, no. 3, 2861-2867.

17. Gadhavi, L. J., Bhavsar, M. D. (2019). Efficient

Resource Provisioning Through Workload

Prediction in the Cloud System. Smart Trends in

Computing and Communications. Smart Innovation,

Systems and Technologies, vol 165. Springer,

Singapore, 317-325.

18. Pilkauskas, V., Plestys, R., Vilutis, G.,

Sandonavicius, D. (2011). Improvement of WMS

Functionality, Aiming to Minimize Processing Time

of Jobs in Grid Computing. Electronics and

electrical engineering ISSN 1392 – 1215. No.

7(113).

19. Vilutis, G., Sandonavičius, D. (2008). The complex

evaluation of parameters influence on QoS. ITI

2008: proceedings of the 30th International

Conference on Information Technology Interfaces,

June 23-26, Cavtat/Dubrovnik, Croatia, 905-910.

20. Vilutis, G., Butkiene, R., Lagzdinyte-Budnike, I.,

Sandonavicius, D., Paulikas K. (2013). The QoGS

Method Application for Selection of Computing

Resources in Intercloud. Elektronika Ir

Elektrotechnika, 19(7), 98-103.

129

UŽDUOČIŲ PASKIRSTYMAS SKAIČIUOJAMAJAME GRIDE NAUDOJANT PARAMETRŲ SVORINIŲ

KOEFICIENTŲ PRI(SI)TAIKYMĄ

Santrauka

Skaičiuojamieji Grid tinklai plačiai naudojami didelių skaičiavimų uždaviniams spręsti. Tai aktualu sprendžiant mokslines
problemas. Straipsnyje pristatomas metodas, kuris sutrumpina į Grid tinklą išsiųstos užduoties rezultato gavimo laiką.

Siekiant, kad užduotis Grid tinkle būtų įvykdyta per trumpiausią laiką, labai svarbu žinoti, į kurį resursą ją pasiųsti. Šiame

straipsnyje pristatomas į Grid resursų parinkimą orientuotas metodas, padedantis brokeriui parinkti tinkamiausią resursą
užduočiai spręsti. Tinkamiausio resurso parinkimui yra taikomas savaiminis pritaikymas, kurio esmė bei rezultatai pristatomi

šiame straipsnyje.

Reikšminiai žodžiai: Grid tinklai, debesų tinklai, paslaugų kokybė, išteklių brokeris, savarankiškas parametrų svorių

mokymasis.

Informacija apie autorius

dr. Donatas Sandonavičius. Kauno technologijos universiteto Informatikos fakulteto Taikomosios

informatikos katedros lektorius. Mokslinių tyrimų kryptys: kompiuterių tinklai, GRID ir debesų tinklai.

El. pašto adresas: donatas.sandonavicius@ktu.lt

Aušra Gadeikytė. Kauno technologijos universiteto Informatikos fakulteto Taikomosios informatikos

katedros lektorė. Mokslinių tyrimų kryptys: kompiuterių tinklai, GRID ir debesų tinklai, baigtinių elementų

metodai.

El. pašto adresas: ausra.gadeikyte@ktu.lt

dr. Giedrius Paulikas. Kauno technologijos universiteto Informatikos fakulteto Taikomosios informatikos

katedros lektorius. Mokslinių tyrimų kryptys: kompiuterių tinklai, GRID ir debesų tinklai, genetiniai

algoritmai.

El. pašto adresas: giedrius.paulikas@ktu.lt

dr. Mindaugas Vaitkūnas. Kauno technologijos universiteto Informatikos fakulteto Taikomosios

informatikos katedros lektorius. Mokslinių tyrimų kryptys: kompiuterių tinklai, GRID tinklai.

El. pašto adresas: mindaugas.vaitkunas@ktu.lt

dr. Gytis Vilutis. Kauno technologijos universiteto Informatikos fakulteto Taikomosios informatikos katedros

docentas. Mokslinių tyrimų kryptys: kompiuterių tinklai, GRID ir debesų tinklai.

El. pašto adresas: gytis vilutis@ktu.lt

Gintaras Butkus. Kauno kolegijos Technologijų fakulteto Informatikos katedros lektorius. Mokslinių tyrimų

kryptys: GRID tinklai.

El. pašto adresas: gintaras.butkus@go.kauko.lt

mailto:donatas.sandonavicius@ktu.lt
mailto:ausra.gadeikyte@ktu.lt
mailto:giedrius.paulikas@ktu.lt
mailto:vilutis@ktu.lt

