A review of smart structures and adaptation of 3d printing methods for future fashion applications

  • Viktorija Diak Vilnius Academy of Arts, Institute of Art Research
Keywords: 3D printing, smart textile, shape memory, 3D printed fabric, flexible 3D printed textile

Abstract

The rapid advancement of innovative technological processes necessitates the fashion industry to contemplate novel perspectives it can offer. Additionally, the industry is progressively reducing its reliance on natural monofilaments and transitioning towards synthetic fabrics with new characteristics, employing intricate composites. The emergence of smart materials incorporating microencapsulation, shape-memory materials, and sensors responsive to external stimuli further contributes to this trend. Efforts are being made to incorporate wearable electronics in the form of flexible multifunctional devices. However, the creation of such novel materials/structures and their integration with traditional fibres present numerous challenges, urging the industry to explore new manufacturing methods. This review primarily focuses on actively developing types of passive intelligent structures discovering their properties and advantages in relation to future clothing. Given that progress is achieved through programming and modifying the structures themselves using new materials/composites, prototyping plays a pivotal role as a problem-solving process. It involves searching for new production methods that can rapidly and cost-effectively help achieve desired outcomes. Presently, additive technologies represent one of the most successful and rapidly advancing alternative manufacturing methods. Consequently, they have been widely applied and actively developed in fields such as soft robotics, biomedical devices/sensors/fabrics, flexible wearable electronics, 4D printed structures, and other clothing components and accessories. The applicability of these technologies is illustrated in creating each specific type of smart structure under consideration by briefly describing 3D printing methods and providing examples of their usage. This serves to demonstrate how effectively and qualitatively they enable the prototyping of various multilayered structures and composites. Furthermore, these technologies hold the potential for integrating dissimilar processes, thereby facilitating the development of new smart fabrics with a significantly greater range of variations in the future. Overall, this article aims not only to demonstrate the suitability of additive technologies for smart structures but also to identify technological trends for future research in the fashion industry.

Downloads

Download data is not yet available.

References

1. Ameen, A. A., Takhakh, A. M., & Abdal-hay, A. (2023). An Overview of the Latest Research on the Impact of 3D Printing Parameters on Shape Memory Polymers. European Polymer Journal, 112145.
2. Atwah, A. A., & Khan, M. A. (2023). Influence of microscopic features on the self-cleaning ability of textile fabrics. Textile Research Journal, 93(1-2), 450-467.
3. Atwah, A. A., Almutairi, M. D., He, F., & Khan, M. A. (2022). Influence of printing parameters on self-cleaning properties of 3D printed polymeric fabrics. Polymers, 14(15), 3128.
4. Bataglini, W. V., Dal Forno, A. J., Steffens, F., de Souza, A. A. U., & Kipper, L. M. (2021, April). 3D Printing Technology: An overview of the textile industry. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Sao Paulo, Brazil (pp. 5-8).
5. Barraza, B., Olate-Moya, F., Montecinos, G., Ortega, J. H., Rosenkranz, A., Tamburrino, A., & Palza, H. (2022). Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Science and Technology of Advanced Materials, 23(1), 300-321.
6. Biswas, M. C., Chakraborty, S., Bhattacharjee, A., & Mohammed, Z. (2021). 4D printing of shape memory materials for textiles: Mechanism, mathematical modelling, and challenges. Advanced Functional Materials, 31(19), 2100257.
7. Çelikel, D. C. (2020). Smart e-textile materials. Advanced Functional Materials, 1-16.
8. Corzo, D., Tostado-Blázquez, G., & Baran, D. (2020). Flexible electronics: status, challenges and opportunities. Frontiers in Electronics, 1, 594003.
9. Chang, Y., Qi, X., Wang, L., Li, C., & Wang, Y. (2023). Recent Advances in Flexible Multifunctional Sensors. Micromachines, 14(11), 2116.
10. Chakraborty, J. N., Dhaka, P. K., Sethi, A. V., & Arif, M. (2017). Technology and application of shape memory polymers in textiles. Research Journal of Textile and Apparel, 21(2), 86-100. doi.org/10.1016/j.sbspro.2015.06.283
11. Chan, K. P., He, F., Atwah, A. A., & Khan, M. (2023). Experimental investigation of self-cleaning behaviour of 3D-printed textile fabrics with various printing parameters. Polymer Testing, 119, 107941.
12. Chandrasekaran, S., Jayakumar, A., & Velu, R. (2022). A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. Nanomaterials, 12(23), 4251.
13. Chen, Y., Yang, Y., Li, M., Chen, E., Mu, W., Fisher, R., & Yin, R. (2021). Wearable actuators: An overview. Textiles, 1(2), 283-321.
14. Cheung, T. W., & Li, L. (2018). Sustainable development of smart textiles: A review of ‘self-functioning’ abilities which makes textiles alive. Journal of Fashion Technology & Textile Engineering, 4(2), 151-156.
15. Chiappone, A., Roppolo, I., Scavino, E., Mogli, G., Pirri, C. F., & Stassi, S. (2023). Three-Dimensional Printing of Triboelectric Nanogenerators by Digital Light Processing Technique for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 15(46), 53974-53983.
16. Chortos, A., Hajiesmaili, E., Morales, J., Clarke, D. R., & Lewis, J. A. (2020). 3D printing of interdigitated dielectric elastomer actuators. Advanced Functional Materials, 30(1), 1907375.
17. Cleary, F., Srisa-An, W., Henshall, D. C., & Balasubramaniam, S. (2023). Emerging AI Technologies Inspiring the Next Generation of E-textiles. IEEE Access.
18. Dulal, H., Swan, T., Al’Aref, S. J., & Alaie, S. (2023). Low-cost prototyping of Nitinol wires/frames using polymeric cores and sacrificial fixtures with application in individualised frames anchoring through the atrial septum. Scientific Reports, 13(1), 21853.
19. Duan, Y., You, G., Sun, K., Zhu, Z., Liao, X., Lv, L., ... & He, L. (2021). Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 3(22), 6271-6293.
20. Ding, H., Zhang, X., Liu, Y., & Ramakrishna, S. (2019). Review of mechanisms and deformation behaviors in 4D printing. The International Journal of Advanced Manufacturing Technology, 105, 4633-4649.
21. Farber, E., Zhu, J. N., Popovich, A., & Popovich, V. (2020). A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Materials Today: Proceedings, 30, 761-767.
22. Gao, X., Su, J. F., Wang, S., & Yang, P. (2022). Smart Self-Nourishing and Self-Healing Artificial Skin Composite Using Bionic Microvascular Containing Liquid Agent. Polymers, 14(19), 3941.
23. Getaneh, S. A., Temam, A. G., Nwanya, A. C., Ejikeme, P. M., & Ezema, F. I. (2023). Advances in bioinspired superhydrophobic surface materials: A review on preparation, characterisation and applications. Hybrid Advances, 100077.
24. Gök, M. O., Bilir, M. Z., & Gürcüm, B. H. (2015). Shape-memory applications in textile design. Procedia-Social and Behavioral Sciences, 195, 2160-2169.
25. Goel, A., Goel, A. K., & Kumar, A. (2023). The role of artificial neural network and machine learning in utilising spatial information. Spatial Information Research, 31(3), 275-285.
26. Grellmann, H., Lohse, F. M., Kamble, V. G., Winger, H., Nocke, A., Hickmann, R., ... & Cherif, C. (2021). Fundamentals and working mechanisms of artificial muscles with textile application in the loop. Smart Materials and Structures, 31(2), 023001.
27. Han, Y., Cui, Y., Liu, X., & Wang, Y. (2023). A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. Biosensors, 13(9), 896.
28. Hassan, M. S., Zaman, S., Dantzler, J. Z., Leyva, D. H., Mahmud, M. S., Ramirez, J. M., ... & Lin, Y. (2023). 3D Printed Integrated Sensors: From Fabrication to Applications—A Review. Nanomaterials, 13(24), 3148.
29. Heikenfeld, J., Jajack, A., Rogers, J., Gutruf, P., Tian, L., Pan, T., ... & Wang, J. (2018). Wearable sensors: modalities, challenges, and prospects. Lab on a Chip, 18(2), 217-248.
30. Hong, M., Sun, S., Lyu, W., Li, M., Liu, W., Shi, X. L., & Chen, Z. G. (2023). Advances in printing techniques for thermoelectric materials and devices. Soft Science, 3, Article-number.
31. Hunde, B. R., & Woldeyohannes, A. D. (2023). 3D Printing and Solar Cell Fabrication Methods: A Review of Challenges, Opportunities, and Future Prospects. Results in Optics, 100385.
32. Huang, P., Fu, H., Tan, M. W. M., Jiang, Y., & Lee, P. S. (2024). Digital Light Processing 3D‐Printed Multilayer Dielectric Elastomer Actuator for Vibrotactile Device. Advanced Materials Technologies, 9(2), 2301642.
33. Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers, 15(11), 2519.
34. Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., & Haq, M. I. U. (2022). 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 33-42.
35. Júnior, H. L. O., Neves, R. M., Monticeli, F. M., & Dall Agnol, L. (2022). Smart fabric textiles: Recent advances and challenges. Textiles, 2(4), 582-605. doi.org/10.3390/textiles2040034
36. Ji, Y., Luan, C., Yao, X., Fu, J., & He, Y. (2021). Recent progress in 3D printing of smart structures: classification, challenges, and trends. Advanced Intelligent Systems, 3(12), 2000271.
37. Jiang, Y., Islam, M. N., He, R., Huang, X., Cao, P. F., Advincula, R. C., ... & Choi, W. (2023). Recent advances in 3D printed sensors: materials, design, and manufacturing. Advanced Materials Technologies, 8(2), 2200492.
38. Kim, W. S., & Paik, J. (2021). Soft Bionic Sensors and Actuators. Advanced Intelligent Systems, 3(ARTICLE), 2100003.
39. Khalid, M. Y., Arif, Z. U., Tariq, A., Hossain, M., Khan, K. A., & Umer, R. (2024). 3D printing of magneto-active smart materials for advanced actuators and soft robotics applications. European Polymer Journal, 205, 112718.
40. Krüger, T. S., Çabuk, O., & Maas, J. (2023, February). Manufacturing process for multilayer dielectric elastomer transducers based on sheet-to-sheet lamination and contactless electrode application. In Actuators (Vol. 12, No. 3, p. 95). MDPI.
41. Li, J., Wu, C., Chu, P. K., & Gelinsky, M. (2020). 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports, 140, 100543.
42. Li, S. (2023). Review on development and application of 4D-printing technology in smart textiles. Journal of Engineered Fibres and Fabrics, 18, 15589250231177448.
43. Liu, H., Zhang, Z., Wu, C., Su, K., & Kan, X. (2023). Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. Micromachines, 14(6), 1216.
44. Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., ... & Qu, L. (2022). Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Advanced Fiber Materials, 4(3), 361-389.
45. Lee, S., Choi, H. W., Figueiredo, C. L., Shin, D. W., Moncunill, F. M., Ullrich, K., ... & Kim, J. M. (2023). Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Science advances, 9(16), eadf4049.
46. Mahmud, M. P., Zolfagharian, A., Gharaie, S., Kaynak, A., Farjana, S. H., Ellis, A. V., ... & Kouzani, A. Z. (2021). 3D‐Printed Triboelectric Nanogenerators: State of the Art, Applications, and Challenges. Advanced Energy and Sustainability Research, 2(3), 2000045.
47. Milosevic, M., Marquez-Chin, C., Masani, K., Hirata, M., Nomura, T., Popovic, M. R., & Nakazawa, K. (2020). Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomedical engineering online, 19(1), 1-30.
48. Mehrpouya, M., Vahabi, H., Janbaz, S., Darafsheh, A., Mazur, T. R., & Ramakrishna, S. (2021). 4D printing of shape memory polylactic acid (PLA). Polymer, 230, 124080.
49. Mondal, K., & Tripathy, P. K. (2021). Preparation of smart materials by additive manufacturing technologies: a review. Materials, 14(21), 6442.
50. Ning, C., Zheng, G., & Dong, K. (2023). Emerging Self‐Powered Autonomous Sensing Triboelectric Fibres toward Future Wearable Human‐Computer Interaction Devices. Advanced Sensor Research, 2(2), 2200044.
51. Panda, S., Hajra, S., Rajaitha, P. M., & Kim, H. J. (2023). Stimuli-responsive polymer-based bioinspired soft robots. Micro and Nano Systems Letters, 11(1), 1-8.
52. Qiao, H., Zhang, Y., Huang, Z., Wang, Y., Li, D., & Zhou, H. (2018). 3D printing individualised triboelectric nanogenerator with macro-pattern. Nano Energy, 50, 126-132.
53. Razzaq, M. Y., Gonzalez-Gutierrez, J., Mertz, G., Ruch, D., Schmidt, D. F., & Westermann, S. (2022). 4D printing of multi-component shape-memory polymer formulations. Applied Sciences, 12(15), 7880.
54. Remaggi, G., Zaccarelli, A., & Elviri, L. (2022). 3D printing technologies in biosensors production: Recent developments. Chemosensors, 10(2), 65.
55. Rotari, E., & Negara, C. (2017). Possibilities and applications of smart textiles. In MATEC Web of Conferences (Vol. 112, pp. 1-6). doi.org/10.1051/matecconf/201711204025
56. Ruckdashel, R. R., Venkataraman, D., & Park, J. H. (2021). Smart textiles: A toolkit to fashion the future. Journal of Applied Physics, 129(13). doi.org/10.1063/5.0024006 (p. 129, 130)
57. Ruckdashel, R. R., Khadse, N., & Park, J. H. (2022). Smart E-textiles: overview of components and outlook. Sensors, 22(16), 6055.
58. Shi, Q., Sun, Z., Zhang, Z., & Lee, C. (2021). Triboelectric nanogenerators and hybridised systems for enabling next-generation IoT applications. Research.
59. Shi, Q., Sun, J., Hou, C., Li, Y., Zhang, Q., & Wang, H. (2019). Advanced functional fiber and smart textile. Advanced Fiber Materials, 1, 3-31.
60. Shin, J., Han, Y. J., Lee, J. H., & Han, M. W. (2023). Shape Memory Alloys in Textile Platform: Smart Textile-Composite Actuator and Its Application to Soft Grippers. Sensors, 23(3), 1518.
61. Song, O., Rhee, D., Kim, J., Jeon, Y., Mazánek, V., Söll, A., ... & Kang, J. (2022). All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Materials and Applications, 6(1), 64.
62. Spiegel, C. A., Hackner, M., Bothe, V. P., Spatz, J. P., & Blasco, E. (2022). 4D printing of shape memory polymers: from macro to micro. Advanced Functional Materials, 32(51), 2110580.
63. Šproch, F., Schindlerová, V., & Šajdlerová, I. (2020). Using 3D printing technology in prototype production to control the dimensions of complexly shaped products. Manufacturing Technology, 20(3), 385-393.
64. Tabassum, M., Zia, Q., Zhou, Y., Wang, Y., Reece, M. J., & Su, L. (2022). A Review of Recent Developments in Smart Textiles Based on Perovskite Materials. Textiles, 2(3), 447-463.
65. Tang, C., Du, B., Jiang, S., Wang, Z., Liu, X. J., & Zhao, H. (2023). A Review on High‐Frequency Dielectric Elastomer Actuators: Materials, Dynamics, and Applications. Advanced Intelligent Systems, 2300047.
66. Thakur, S. (2017). Shape memory polymers for smart textile applications. Textiles for advanced applications, 323-336.
67. Trivedi, D., Rahn, C. D., Kier, W. M., & Walker, I. D. (2008). Soft robotics: Biological inspiration, state of the art, and future research. Applied bionics and biomechanics, 5(3), 99-117.
68. Tong, Y., Feng, Z., Kim, J., Robertson, J. L., Jia, X., & Johnson, B. N. (2020). 3D printed stretchable triboelectric nanogenerator fibres and devices. Nano Energy, 75, 104973.
69. Valentine, A. D., Busbee, T. A., Boley, J. W., Raney, J. R., Chortos, A., Kotikian, A., ... & Lewis, J. A. (2017). Hybrid 3D printing of soft electronics. advanced Materials, 29(40), 1703817.
70. Wang, D., Chang, J., Huang, Q., Chen, D., Li, P., Yu, Y. W. D., & Zheng, Z. (2021). Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundamental Research, 1(4), 399-407.
71. Wang, Y., Ma, X., Jiang, Y., Zang, W., Cao, P., Tian, M., ... & Zhang, L. (2022). Dielectric elastomer actuators for artificial muscles: A comprehensive review of soft robot explorations. Resources Chemicals and Materials.
72. Wang, W., Ouaras, K., Rutz, A. L., Li, X., Gerigk, M., Naegele, T. E., ... & Huang, Y. Y. S. (2020). Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Science Advances, 6(40), eaba0931.
73. Wang, Y., Zhou, Y., Li, W., Liu, Z., Zhou, B., Wen, S., ... & Zhou, F. (2020). The 3D printing of dielectric elastomer films assisted by electrostatic force. Smart Materials and Structures, 30(2), 025001.
74. Wang, Y., Wang, Z., Wang, Z., Xiong, T., Shum, P. P., & Wei, L. (2023). Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibres. Advanced Electronic Materials, 9(4), 2201194.
75. Weiss, L., & Sonsalla, T. (2022). Investigations of Fused Deposition Modeling for Perovskite Active Solar Cells. Polymers, 14(2), 317.
76. Wen, F., He, T., Shi, Q., Zhang, T., & Lee, C. (2020, January). Superhydrophobic triboelectric textile for sensing and energy harvesting applications. In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 582-585). IEEE.
77. Wu, S., Zeng, T., Liu, Z., Ma, G., Xiong, Z., Zuo, L., & Zhou, Z. (2022). 3D Printing Technology for Smart Clothing: A Topic Review. Materials, 15(20), 7391.
78. Wu, X., Huang, W. M., Zhao, Y., Ding, Z., Tang, C., & Zhang, J. (2013). Mechanisms of the shape memory effect in polymeric materials. Polymers, 5(4), 1169-1202. doi.org/10.3390/polym5041169
79. Xiang, C., Guo, J., Sun, R., Hinitt, A., Helps, T., Taghavi, M., & Rossiter, J. (2019). Electroactive textile actuators for breathability control and thermal regulation devices. Polymers, 11(7), 1199.
80. Xu, X., Zhang, H., Yan, Y., Wang, J., & Guo, L. (2021). Effects of electrical stimulation on skin surface. Acta Mechanica Sinica, 1-29.
81. Xu, Y., Wu, X., Guo, X., Kong, B., Zhang, M., Qian, X., ... & Sun, W. (2017). The boom in 3D-printed sensor technology. Sensors, 17(5), 1166.
82. Yang, H., Leow, W. R., & Chen, X. (2018). 3D printing of flexible electronic devices. Small Methods, 2(1), 1700259.
83. Yin, J., Wang, S., Di Carlo, A., Chang, A., Wan, X., Xu, J., ... & Chen, J. (2023). Smart textiles for self-powered biomonitoring. Med-X, 1(1), 3.
84. Younes, B. (2023). Smart E-textiles: A review of their aspects and applications. Journal of Industrial Textiles, 53, 15280837231215493.
85. Zhang, W., Feng, P., Chen, J., Sun, Z., & Zhao, B. (2019). Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 88, 220-240.
86. Zhang, Y., Zhang, Z., Yang, J., Yue, Y., & Zhang, H. (2021). A review of recent advances in superhydrophobic surfaces and their applications in drag reduction and heat transfer. Nanomaterials, 12(1), 44.
87. Zhou, H., Li, Q., Zhang, Z., Wang, X., & Niu, H. (2023). Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibres and Fabrics: Bio-inspiration, Strategies, and Applications. Advanced Fiber Materials, 1-37.
Published
2024-05-29
How to Cite
Diak, V. (2024). A review of smart structures and adaptation of 3d printing methods for future fashion applications. Mokslo Taikomieji Tyrimai Lietuvos Kolegijose, 1(20), 154-164. https://doi.org/10.59476/mtt.v1i20.657